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Abstract
Ferroelectric materials such as lithium niobate and lithium tantalate show a
non-linear hysteresis behaviour, which may be explained by dynamical system
analysis. The behaviour of these ferroelectrics is usually explained by domains
and domain wall movements. So, the spatial variation of the domain wall was
studied previously in order to see its effect on the domain wall width in the
context of the Landau–Ginzburg functional. In the present work, both temporal
and spatial variations of polarization are considered, and by using the Euler–
Lagrange dynamical equation of motion, a Klein–Gordon equation is derived
by taking the ferroelectrics as a Hamiltonian system. An interaction has been
considered between the nearest neighbour domains, which are stacked sideways
in a parallel array with uniform polarization. This interaction term is associated
with the spatial term and when this interaction is assumed to be zero, the spatial
term vanishes, giving rise to a Duffing oscillator differential equation, which
can be also studied by a dynamic system analysis.

1. Introduction

Important properties such as giant polarization, and many other properties, are commonly
observed in ferroelectric materials, which have a wide area of applications [1]. However, the
most significant property is their ability to show non-volatile memory, which remains finite
when the field is withdrawn ([2] and the other important references therein). This is clearly
noticed in the hysteresis curve of polarization (P) versus external electric field (E), which
is non-linear. The study of this non-linear behaviour of P versus E is quite interesting in
order to get an insight into the memory function. In a previous investigation, we used the
famous Landau–Ginzburg functional for the free energy (G) to explain this behaviour [3].
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This was done by giving perturbations on P , E and the Landau free energy (G) by taking the
spatial variation of the domain wall width in terms of these parameters as ordinary differential
equations. By treating them as an eigenvalue problem, the critical values of polarization (Pc)

were estimated within the ‘zone of stability’ through a linear Jacobian transformation, which
showed a possibility of a ‘giant memory’, and the corresponding limits of domain wall width
were also found in the case of lithium tantalate and lithium niobate ferroelectric crystals [3],
whose switching and hysteresis behaviour have been studied in detail by Gopalan et al [4].

In the previous study, only spatial variation of polarization was considered through a static
soliton wave solution of Lines and Glass [5] as a governing equation, as was also done by Kim
et al [2]. It is important to study polarization as a function of time for a better understanding
of the memory function and consequent switching phenomenon, which leads to a dynamical
situation. Moreover, it is also important to study the variation of both space and time of
polarization with the Euler–Lagrange equation of motion involving an ‘interaction’ between
the neighbouring domains associated with the spatial term, which gives rise to a ‘field equation’
like the Klein–Gordon equation. This Klein–Gordon (KG) equation can of course be used for
dynamic system analysis. However, if the interaction term tends to be very small for certain
ferroelectric crystals so that it could be assumed to be zero, the spatial term vanishes and we
get a Duffing oscillator non-linear differential equation. This equation is also important for
dynamic system analysis for certain device applications in the time domain [6].

Such studies have not been undertaken so far, possibly due to an over-emphasis on the
Landau–Ginzburg equation, which in our case is taken as the potential formulation in the
context of dynamical systems. Here, it should be clearly mentioned that the depolarizing
field term, domain wall energy and the elastic energy are excluded in this analysis in order
to show that even the Landau potential is quite enough to explain the dynamic situation in
ferroelectric materials. A detailed theoretical analysis is presented here in terms of constructing
a Hamiltonian and then using a ‘variation principle’ to arrive at the Klein–Gordon equation.
This classical approach seems quite powerful to enlighten us on the realm of physics involved
in such interesting and important condensed matter systems with various applications.

2. Theoretical development

The relation of the free energy (G) to the order parameter (P) is described by the Landau–
Ginzburg equation, neglecting the higher order terms, as

G =
(

−α1

2
P2 + α2

4
P4

)
− E P. (1)

Here, E P is the energy due to the applied electric field, and α1 and α2 are the expansion
coefficients, which are both greater than zero and which are also important parameters for
ferroelectric materials, as shown later.

2.1. Hamiltonian formulation

In the previous study, two domains in the form of rectangular boxes were taken in order to find
the optimal width of the domain wall between these two domains on which the perturbation
was given with respect to spatial coordinates [3]. In a Hamiltonian system such as the dipolar
system, since we are interested in the evolution of both space and time of the polarization
(P), we are inclined to take a series of N 2D rectangular boxes with uniform polarization as
an ‘array of domains’, and then first of all study the time evolution of polarization of the i th
domain (i.e. Pi ). Now, let us write the Hamiltonian of such a system of domains in terms of the
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momentum (pi) in the kinetic part and consider equation (1) for the free energy functional in
the potential formulation as

H =
N∑

i=1

(
1

2md

)
p2

i +
N∑

i=1

((
−α1

2
P2

i + α2

4
P4

i

)
− E Pi

)
. (2)

The momentum can be defined in terms of the order parameter (Pi ) as

pi = ∂

∂ t

(
md

Qd
Pi

)
=

(
md

Qd

)
.

Pi . (3)

Here, we define md = mass per unit volume of dipoles (mass density of dipoles) and
Qd = charge per unit volume of dipoles (charge density of dipoles). The concept of mass
and charge in a dipolar material is lucidly given by Todorov [7]. Equation (3) can be used to
write the Hamiltonian in terms of the order parameter (Pi ) as

H =
N∑

i=1

md

2Q2
d

(
.

Pi )
2 +

N∑
i=1

((
− α1

2
P2

i + α2

4
P4

i

)
− E Pi

)
. (4)

This Hamiltonian gives rise to the Duffing oscillator differential equation for dynamic system
analysis [6].

2.2. Interaction in a static field

In order to take a coupling or interaction between the neighbouring domains, i.e. between the
polarizations in the i th domain (Pi ) and the polarization in (i − 1)th domain (Pi−1) and
the polarization in the (i + 1)th domain (Pi+1), it is useful to operate in the generalized
coordinate system of (pi , qi), where pi is the momentum of the system, as in equation (3),
and qi = Pi/Qd. Since the dimension of Qd is Coulomb m−3, the dimension of Pi/Qd is only
metres, and it is then useful to eventually introduce the ‘space’ as a variable.

This is an important point in that even without considering the depolarizing or domain
wall energy, the space term can be introduced in the energy formulation in the construction
of our Hamiltonian for the analysis of the equation of motion of this dipolar system. The
elastic energy term is also important, but it can be considered to be renormalized into the
expansion coefficients of equation (1). Hence, the Landau free energy is just sufficient for
potential calculation. Now, we can write the Hamiltonian of this system, as in equation (4), by
taking care of the above interaction terms, as

H = 1

2md

N∑
i=1

p2
i +

N∑
i=1

[
−α1 Q2

d

2

(
Pi

Qd

)2

+ α2 Q4
d

4

(
Pi

Qd

)4]

+
N∑

i=1

[
k Q2

d

4

(
Pi

Qd
− Pi−1

Qd

)2

− Qd

(
Pi

Qd

)
E

]

= md

2

N∑
i=1

(
.
qi)

2 +
N∑

i=1

[
−

(
α1 Q2

d

2

)
q2

i +
(

α2 Q4
d

4

)
q4

i

]

+
N∑

i=1

[
k Q2

d

4
(qi − qi−1)

2 − Qdqi E

]
. (5)

Here, (k/2)(Pi − Pi−1) is considered to be the contribution by first neighbour coupling or
interaction. In a ferroelectric system, this kind of coupling can be considered simplistic, but
surely for this type of arrangement of domains, there has to be some kind of near-neighbour
coupling between the domains in one dimension, as mentioned above. The above Hamiltonian
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involves an energy density in order to evaluate the Lagrangian density. By using the Euler–
Lagrange equation of motion, we can write

md(
..
qi ) = −[−(α1 Q2

d)qi + (α2 Q4
d)q

3
i ] − k Q2

d

2
(qi − qi−1 + qi − qi+1) + Qd E (6)(

md

Q2
d

)
..
Pi = α1 Pi − α2 P3

i + k

2
(Pi+1 − 2Pi + Pi−1) + E (7)

(
md

Q2
d

)
..
Pi − α1 Pi + α2 P3

i = k

2
(Pi+1 − 2Pi + Pi−1) + E . (8)

At this stage, it should be mentioned that in order to take both temporal and spatial variation
of polarization, we have taken the time variation from the kinetic part, but the spatial variation
comes out from the ‘interaction’ between the polarization domains, which are stacked sideways
in the x-coordinate. In our derivation of equation (8), the spatial variation of polarization (Pi )

is considered as discrete. Now, in order to change from a discrete to the continuum KG system,
it is necessary to give some physical explanations for our system. The number of domains
is N and let us consider the ‘domain length’ as L so that the sample dimension along the
x-coordinate is N L , which is significantly larger than L.

Therefore, the change in polarization while moving from one domain to the next one occurs
within a ‘length scale’ which is much smaller compared to that of the sample (N L). In this
length scale, we can replace Pi (t) by P(x, t). Similarly, we can replace Pi−1(t) by P(x − L,
t), and Pi+1(t) by P(x + L, t). Now, we can write the polarization terms arising from the
interaction in equation (8) as

Pi+1(t) − 2Pi (t) + Pi−1(t) = P(x + L, t) − 2P(x, t) + P(x − L, t)

= L2 ∂2 P

∂x2
+ O(L4) (8a)

after Taylor expansion of the above polarization terms4. Then, it is possible to describe this
scenario as

P(x + L, t) − 2P(x, t) + P(x − L, t)

L2
≈ ∂2 P

∂x2
(8b)

since L is very small, in the nanometre range. This is the key point in this particular derivation
of the KG equation for our system of ferroelectrics. Now, by introducing equation (8b) into (8)
and after dropping the index i , we get(

md

Q2
d

)
..
P − α1 P + α2 P3 −

(
k

2

)
L2 ∂2 P

∂x2
− E = 0. (9)

It may be mentioned that Rikvold et al [8] considered an oscillating field in the context
of a dynamic phase transition by dividing the ‘space’ into lattice points with lattice spacing
�x = a, which was done for the purpose of numerical integration.

For the convenience of analysis as in the previous study [3], different participating
variables along with the spatial term are taken in the non-dimensional form as

P ′ = P

Ps
(10a)

E ′ = E

Ec
(10b)

t ′ = t

tc
(10c)

4 This important point was raised by the referee.
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x ′ = x

L
(10d)

where Ps = saturation polarization, Ec = coercive field in the usual hysteresis curve,
tc = critical time, which is equal to the total time taken for the external field to reach a saturation
value on the higher field side at P = Ps, and here, L is the length of the one-dimensional single
domain in the spatial x-coordinate.

Equation (9) can now be written as(
md

Q2
d

)(
Ps

t2
c

)
∂2 P ′

∂ t ′2 − (α1 Ps)P ′ + (α2 P3
s )P ′3 −

(
k Ps

2

)
∂2 P ′

∂x ′2 − Ec E ′ = 0. (11)

Now, let us put tc = 1
Qd

√
md Ps

Ec
seconds, and for the sake of simplicity by removing the

prime notation and by taking α2 = α1/P2
s from [2], we get

∂2 P

∂ t2
− ᾱ1 P + ᾱ1 P3 −

(
k Ps

2Ec

)
∂2 P

∂x2
− E = 0 (12)

where ᾱ1 = ᾱ2 = α1 Ps
Ec

. This is the famous Klein–Gordon (KG) equation. Therefore, if
we take both time and space as variables, we arrive at the KG equation, which should be the
‘governing’ equation of polarization in terms of the Euler–Lagrange equation of motion for
charged particles (dipoles) in a ferroelectric material consisting of an ‘array of domains’ with
coupling/interaction between the neighbouring domains.

The KG equation is actually a classical ‘field’ equation, which is applicable to electric
charges or dipoles with two energy eigenvalues describing two different charge states. It
is pertinent to mention here that the soliton solution of the KG-like equation is treated as a
structureless ‘point-like’ particle, and the topological solitons possess an important application
to describe domain walls in ferroelectric materials, as shown by Gonzales et al without
mentioning any particular ferroelectric system [9], whereas we have actually done the stability
analysis in the case of lithium niobate and lithium tantalate [10].

3. Results and discussion

In the above KG equation (12), if we take the interaction constant k = 0 as a special case for
certain ferroelectric crystals where the interaction between the neighbouring domains is weak,
i.e. the k term is very small, then we arrive at the Duffing oscillator differential equation without
any damping term as

d2 P

dt2
− ᾱ1 P + ᾱ1 P3 − E = 0. (13)

It should be clearly pointed out here that even though some of the tenets of the above deduction
might be known in the realm of condensed matter physics, a proper theoretical basis has not
been attempted so far for the derivation of a governing equation of polarization in ferroelectric
materials in the context of a dynamical system from a classical Hamiltonian, by giving due
importance to the Landau–Ginzburg ‘two-well’ potential. Moreover, for those engaged in the
device application of such materials in the time domain analysis, the Duffing oscillator equation
with and without damping could be used to explore various possibilities for deciding on the
input signal.

The Klein–Gordon equation (12) can now be written with a non-dimensional damping
term as

∂2 P

∂ t2
− k̄

∂2 P

∂x2
− ᾱ1(P − P3) − E + γ̄

∂ P

∂ t
= 0 (14)
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where

γ̄ = γ Ps

tc Ec
. (15a)

Here, γ is the damping coefficient, and the interaction term is defined as

k̄ = k Ps

2Ec
. (15b)

For the existence of soliton solutions of the KG equation with a damping term, in order
to explain the case where γ̄ �= 0 and E �= 0 (static electric field), a simple deduction shows
the limiting or critical value of the applied electric field. Here, a situation is described to see
under what condition the soliton exists in our ferroelectric system. Now, equation (14) can be
rearranged as

k̄
∂2 P

∂x2
− ∂2 P

∂ t2
− γ̄

∂ P

∂ t
+ ᾱ1(P − P3) = −E . (16)

Let us take a new variable θ1 as

θ1 = x −
√

k̄ · V t√
2k̄
ᾱ1

· √1 − V 2
. (17)

By considering a component of the soliton velocity as V , let us also put

dP

dθ1
= φ (18a)

d2 P

dθ2
1

= dφ

dθ1
= −2(P − P3) − V1φ − E1 (18b)

where

V1 =
(√

2

ᾱ1

)
γ̄ V√

1 − V 2
(19)

E1 = 2E

ᾱ1
. (20)

The stationary points of a system of equations (18) are given by

φ = 0 (21a)

and

ᾱ1(P3 − P) − E = 0. (21b)

For the three real and distinct roots of equation (21b), the following condition has to be
satisfied:

E <
4(ᾱ1)

2

27
= Ecrit(say). (22)

Each real solution corresponds to a possible stationary state of the soliton [9]. Now, the
value of Ecrit for lithium niobate ferroelectric can be written as

Ecrit = 2ᾱ1√
27

= 2ᾱ1

3
√

3
= 129.072 426. (23a)

The value of Ecrit for lithium tantalate is

Ecrit = 161.886 061. (23b)
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For lithium niobate, the value for ᾱ1 = α1 Ps
Ec

(where Ec is the coercive field) is 3.3534 × 102.

This value has been calculated by taking α1 = 1.8849 × 109 V m C−1 from Kim et al [2]
and Ps = 0.75 C m−2 and Ec = 40 kV cm−1 also from [2]. For lithium tantalate [2],
ᾱ1 = 4.2058 × 102, Ec = 17 kV cm−1 and Ps = 0.55 C m−2. The values for the critical
field are intentionally given to six digits after decimal point, since they show extremely high
sensitivity in the dynamic system analysis [6]. These values for the electric field are the non-
dimensional values, i.e. Ecrit = E/Ec (E being the dimensional value in this case), and the
values of the coercive field (Ec) for both lithium niobate and lithium tantalate are known [2].
Hence, the limiting values of the (dimensional) electric field can be found as

For lithium niobate ferroelectric crystals = 516 MV m−1 = 0.516 V nm−1, and

For lithium tantalate ferroelectric crystals = 275 MV m−1 = 0.275 V nm−1.

i.e. for a ‘thin film nanodevice’ of, say, 10 nm thickness, the optimum voltages to be used
are 5.16 and 2.75 V for lithium niobate and lithium tantalate crystals, respectively. The above
limiting or critical values are valid for the type of coupling between the polarization domains
that is assumed in the model described in this paper.

4. Conclusion

The present study of the evolution of polarization with both time and space as variables, using
the Euler–Lagrange equation of motion, gives rise to the non-linear Klein–Gordon equation by
taking care of coupling/interaction between the neighbouring domains of uniform polarization.
When this coupling/interaction is taken as zero, the Klein–Gordon equation gives rise to a
Duffing oscillator equation, when the spatial term is dropped. A non-linear KG equation can
be used for dynamic analysis for soliton solutions. Eventually, a critical value of the electric
field is found for lithium niobate and lithium tantalate beyond which the solitons do not exist.
This limiting value of electric field may be useful for device applications in faster optical
communication systems.
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